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I. INTRODUCTION 

Given a nonlinear parachute gliding system, control can b« offacted by a 

servomotor pulling on the shroud lines of the parachute which causes a banked 

turn of the parachute and a change in the direction of flight. Under the condition 

that the magnitude of the wind velocity vector w be less than that of the para- 

chute horizontal velocity vector v (relative to air); i.e., ||w|| < ||v||, the 

parachute possesses a wind penetrating capability and the potential of reaching 

the target under arbitrary wind directions. It is assumed that the initial 

altitude, and thus the gliding period, is properly chosen in accordance with the 

wind angle 6 and the ratio ||w||/||v|| such that a solution exists. Also, a 

uniform wind, constant in both magnitude and direction, is assumed throughout 

this analysis. 

It is desired to compute a control law which minimizes the control effort 

and the terminal error from the target. The usual linearization analysis is 

insufficient to approximate the given system due to the highly transcendental 

nonlinearities. Thus, a numerical solution to this problem is developed and 

intended to give some light to the stochastic wind case study. The numerical 

algorithm derived by Martensson [4] in solving the Hamilton-Jacobi-Bellman 

partial differential equation with the differential dynamic programming (DDP) 

principle is applied to solve the given nonlinear gliding problem. The 

theoretical derivation of this algorithm is given in the Appendix. 

II. PROBLEM FORMULATION 

A. System Equations and Transformation 

Assuming a constant wind w with angle 6 in the horizontal plane, a con- 

stant rate of de*:?rr.t v, and an initial altitude h at launch time, the equations 

of motion governing the parachute can be expressed in the horizontal plane as 

follows: (Pearson [5]) 

■ ■  - ■ --..-. . 
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J-p ■ ▼♦ w   0 < t < T s ^ (1) 

p: position vector 

v: horizontal velocity cf parachute relative to air. 

This is depicted in Fig. 1. The velocity vector v(t) is assumed to have con- 

stant magnitude a. Thus v can be represented by 

v.(t) s a cos[w(t)] 
(2) 

v2(t) * a sin[(i»(t)] 

where the velocity angle u(t) is related to the bank angle v of the parachute 

via i:he well-known relation 

^- u(t) = | tanf (t) (3) 

g: gravity acceleration. 

Since the bank angle + can be directly manipulated by changes in the 

servomotor connecting the shroud lines, we can rewrite eq. (1) - (3) as 

dt pl 
r a cosw + w. 

dt P2 
s a since + w 

d 
at" 3 u 

(«0 

in which u is regarded as the control variable. Let p(t ), &>(t ), and w(t ) 
o    o       o 

be given at some initial time t in the interval 0 < t < T. A performance 

index which takes into account several desirable features of this problem is 

P(u) r i | |p(T)| |2 + i c rtt(T)-e-ir]
2 ♦ 5^2-y T u2(t)dt     (5) 

■ ■:. ... ... ■■   ■■J..i_^.;< — .-^^ 
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where q1 an*i q2 are non-negative weighting parameters. In eq. (5) the first 

ten, 1/2 ||p(T)||2, reflects the desirability of minimizing the Euclidean dis- 

tance from the target at the predetermined terminal tine T. The second term 

reflects the desirability of having the parachute point upwind at the terminal 

time in order to reduce the net horizontal velocity and thus the impact at touch- 

down. The last term reflects the cost of control effort in terms of the 'average 

power' spent over the interval t * t * T. 

A time-varying transformation of the origin could be made according to 

y =  p t (T-t)w  t * t * T (6) 

Then minimizing ||p(T)|| is equivalent to minimizing ||y(T)||. Moreover, the 

independent variable t could be transformed via 

t-t 

* • rsr <" o 

Define a set of new variables x.» x_, x, by 

y y 
xi s aTTTTT •      x2 s 7VFTJ •      X3 = w (8) 

o o 

The system equations after transformation become 

x. = cos x. 

*2 = sin x3 0 t T i 1 (9) 

X«  s   (T-t   )u =  U 
O O 

with initial conditions 

*1(0) s aTflTT CPl(to> + (T-V"l3 
o 

*2(0) ■ iTt^TT &2(to> * <T-*0*2
3 

x3(0) * w(to) 
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Here ' •' denotes differentiation with respect to normalized tine T . 

formar.ce index in terms of these new variables can be rewritten as 

P(u) * x2(l) + **<1) ♦ Q^XgCD-e-w]2 + Q2 | u2(i)dT 

The per- 

(10) 

Q, = 
1 " a2(T-tJ2 o 

"J5:* 

In vector form we have 

a'(T-t ) o 

x s A(x) + Bu 

f1 
P(u) =  [A°(x) + B°(u,t)]dt 

where 

A(x) = 

cos x3* 0 

sinx3 ,    B = 0 

0 .1 

(11) 

(12) 

A°(x) = x2(l) + x2(l) + Q1[x3(l)-e-ir]
2 

B°(G,t) = o2G
2(t) . 

B. Existence of Optimal Control 

According to an existence theorem by Lee and Markus [3], we can show the 

existence of an optimal control to our problem. 

Theorem 2.1; Consider the following process in Rn: 

x = A(x,t) + B(x,t)u   0 $ t $ T 

A performance index 

P(u) = f rA°(x,t) + B°(u,t)]dt 
'o 

is to be minimized. 

Assume: 

(i) A, B, A0, B°, |£, || are continuous for all x e Rn, u e Rm, t c R 
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(ii) Ae(x,t) » 0       V(x,t) e Rn+1 

(iii) B°(u,t) * m|u|p for some constant n > 0, p > 1 

(IT) For each fixed t, B°(u,t) is convex in u 

(v) |x(t)| * 6(|uL), where B(*) is a monotonic increasing function. 

(|»L expresses L.-norm). 

Let the set of admissible controls be L [0,T] such that the response x(t) 

initiating at x yields a finite P(u). Then there exists an optimal control u* 

which minimizes P(u). 

Proof  Refer to [3]. 

In view of eqs. (11) and (12), conditions (i) thru (iv) are evidently 

satisfied. Let 

3 
|x(t)| a [  |x.(t)|   0 * t * 1 (j.3) 

i=l  * 
Since 

x.(t) -  x.(o) + J cos[x3(s)]ds 

it follows from the triangle inequality that 

Ix^t)! $  |xxCo)| + J |cos[x3(s)]|ds * fx^Co)! + 1. 
o 

Similarly, 

|x2(t)| * |x2(o)| + 1 

and . 

|x3(t)| < |x3(o)| + f |u(s)lds * |x3(o)| + |G(t)| . 
'o 

Substituting these inequalities into eq. (13), 

3 
|x(t)| * 2 + I x,(o) + |u(t)|. 5 6(|u(t)L) . 

1 *        x l 

Obviously, ß(«) is monotonically increasing in its argument; thus, condition (v) 

is also fulfilled. By Theorem 2.1 there exists an optimal control 

u* e L2Co,l3 which minimizes the performance index P(u). 

8 
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C. Necessary Conditions for Terminal Constraint Problem 

A more appealing problem is to incorporate the terminal constraints into 

the original optimization problem, i.e., to consider the following modified 

performance Index: 

P(u) = x2(l) + XjU) + Q^XgCD-e-ir]2 + b^d) + b2x3(l) 

* n 
+ b3Cx3(l)-9-w] t Q2 I u2(s)ds (14) 

b.'s are appropriate Lagrange multipliers. 

In this constrained optimization formulation, we require that the parachute 

be driven to the target and directed opposite to the wind at touchdown, while the 

average energy spent is minimized. Recall the integral form of die system 

equations 

x1(t) = x.(o) + J cos[x3(s)]ds 

C 
0 * t * 1 (15) 

x2(t) = Xj(o) +   sin[x3(s)]ds 

By the Schwartz inequality, 

|x (t) - x1(o)|
2 £ {[ |cos[x (s)]|ds)2 < f cos2[x (s)]ds 

'o 'o 

|x2(t) - x2(o)|
2 s I sin2tx3(s)]ds . 

'o 

This implies 

|Xl(l) - x1(o)|
2 + |x2(l) - x2(o)j

2 * 1 . 

Hence, if a control exists which drives x. and x2 to the origin at the terminal 

time, it is necessary that 

|x1(o)|
2 + |x2(o)|

2 * 1 

In other words, the initial conditions of x. and x, must lie within the unit 

circle on the horizontal normalized plane. 

9 
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One other observation is that if we negate the trajectory of x» by 

applying a negative control and a negative initial condition on x», the system 

equations become 

-x3(t) * -x3(c) + I [-u(s)]ds f C-ud 
'o 

C 
.(t) * x.(o) ♦ I cos[-x3(s)]ds 

-x,(t) = -Xj(o) +  sin[-x3(s)]ds 
'o 

Due to the symmetric property of the cosine function, we conclude that it is 

sufficient to consider the upper half unit circle as the waking zone of our 

problem. This is shown in Fig. 2. The negation of an oj.--.nl control u* for a 

set of initial conditions (x.(o), x.(o), xjo)) would be an optimal control for 

the set of initial conditions (x.(o), -xjc)t  -Xg(o)). 

III.   COMPUTER SIMULATION 

The purpose of this simulation work is to study the practicality of comput- 

ing an optimal control on-line with the DDP algorithm. Given a uniform wind with 

known magnitude and direction, a constant descent rate, initial altitude and 

direction of the parachute velocity vector relative to air, selected points in 

the upper unit circle are chosen with various launching angle w(o) to initiate a 

search for the optimal control as a function of time. Since the initial guess 

of the nominal control and multipliers plays a crucial role in the convergence, 

in order to make a proper correction of an initial guess promptly after the first 

one fails, the entire simulations have been executed under a time-sharing system 

CP/CMS of IBM/360. 

10 
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A. Simulation Procedure 

In accordance with the DDP algorithm described in the Appendix, an outline 

of the simulation procedure is as follows: 

1. Guess a nominal control ü(t), 0 * t ( 1, and integrate the system equations to 

obtain x(t). Store u(t), x(t). Guess a set of nominal multipliers b, and 

compute the corresponding nominal cost V(x ,5,0). 

2. Compute boundary conditions for "a", V , and V , then integrate a, V , V 
X An X     XX 

backwards from t ■ 1 to t -  0, while minimizing H(x,u,V ,t). Compute ß. 
X JL 

and store the minimizing control u*(t), ß., and a(x,b,t). 

3. Compare |a(x ,6,0)| with a specified small quantity n.. If |a| < n., the 

predicted change in the performance index is small; (u,x) thus is considered 

as the optimal solution of a constraint-free problem. Otherwise, go to t. 

In addition, if ||f(x(l),l)|| < n,» where TU is a specified allowable 

terminal error, then (ü,x,b) is considered as the optimal solution of the 

terminal constraint problem. Stop. 

4. Apply the modified control u s u* + ß.(x-x) from t = 0 to t = 1. If the 

reduction in cost, V-V, is large enough compared with the predicted change in 

V-V 
cost; e.g., j—r > c (= 0.5), c is an empirical factor, then let (u,x) be the 

new nominal solution and go to 2. Otherwise, 'step-size adjustment' technique 

is required. (Jacobson and Mayne [2]) 

5. Modify the multipliers by 8b so that F + (b -f 6b)*# + I Lds attains a minimum 
'o 

corresponding to ♦ * 0, Then compute boundary conditions for V. , V . , V.. . 
D   XD   DD 

Integrate V , V . , V  backward from t * 1 to t « 0. Compute ß_, and store it. 

6. To compute 6b, notice that for the optimal solution 

V. (x ,b*,0) s ♦,(x*(l),l) = 0   where b* = b + «b . 
a     O 

Expand V. to first order about b and assume v.. (x ,b,0) is nonsingular; 

we have 

11 
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7. Apply the new control u * u* + ß.fix ♦ ß_Äb to the system. Store u and x, 

then check whether 6b is acceptable or not according to 

(i) ||*<x(l),l)|| - ||*(x(l),l)|| > 0 

V(x .b*,0) - V(x .5,0) 
(ii) Y2 > —* 2 > v 

V(x .b*,0) - V(x .b,0)   X 

o        o 

where V is the new nominal cost, y^ and Y2 «re suitably chosen (e.g., 

0 < y.  < 1, Y2 > 1). If satisfied, (u,x) is a new improved nominal solution 

with cost V. Return to 2. If not, go to 8. 

8. Choose (fib), * «■ fib and go to 7. If no correction has been attained after new  z 

several reductions of fib, then (ii) of 7 is released. The only demand on 

fib is to reduce | |i|/| |. 

B. Simulation Results 

In Section II.B we have shown that it is sufficient to consider the upper 

half unit circle as a working zone. Twelve rays of angles 0°, 14°, 30°, 45°, 

68.2°, 90°, 105°, 120°, 135°, 150°, 165° and 180« partition the upper-half unit 

circle into eleven sectors. Five points are chosen along each ray as initial 

launching points. Th*y are located at 0.1, 0.35, 0.6, 0.8 and 0.95 of the unit 

radius and expressed as A, B, C, D, E, respectively. It is assumed that the 

complete feasible region is so smooth that the distribution pattern over these 

sixty points is enough to represent the upper half unit circle. Table 1 lists 

the coordinates of these points. 

Without loss of generality, an easterly wind (along the negative x.-axis) 

is considered of magnitude 20 ft/sec. The magnitude of the parachute velocity 

relative to air is 30 ft/sec. An error criterion of 0.015 is considered in the 

12 
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iterative process, which allows maximum deviation from the target at touchdown of 

no more than 15 ft. and deviation from the up-wind direction of no more than P.5°. 

Weighting factors Q. and Q_ are 1,0 and 0.1, respectively. The gliding time is 

100 sec; however, only normalized time appears in the simulation process. The 

unit time interval is once divided into 100 subintervals when an integration 

routine is applied, although the DDP algorithr is originally devised to equip the 

integration routine with 500 subintervals. By taking this subdivision it is found 

that only one-fourth of computer storage (128K bytes) and one-third of cost are 

required in addition to a loss of accuracy within an order of 1% compared to that 

of '500' subdivision. 

Based on the information available before the search, different initial 

guesses of nominal control and multipliers are used. Among these, constant 

control with null multipliers as well as piecewise constant control with null 

multipliers are interchangeably chosen for every initial setting of launching 

angle. The value of the control is determined such that the launching angle is 

driven opposite to the wind at the terminal time by this control. In addition, 

for each fixed radial point consecutive changes of launching angle are made to 

form a complete data set. At each step change of these angles, a previous 

successful optimal control and multipliers are considered as current initial 

guesses of the nominal control and multipliers. In most instances, as one would 

expect, the latter combination achieves much better convergence than the former 

two. 

It is observed that as far as the convergence is concerned, there is a 

strong dependence on tho way launching angle is measured. More specifically, if 

we define a counterclockwise measurement to be positive, then a convergent solu- 

tion is achieved more frequently for a negative launching «igle than for its 

positive counterpart (i.e., w + 2v). This can be seen from the fact that the 

velocity angle is directly effected by control and the wind is pointed along the 

13 
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negativ« x.-axis which requires the terminal velocity angle to be zero. A nega- 

tive measure of launching angle directs the trajectory to make a counterclockwise 

turn towards the wind at the terminal time. For instance, consider a test 

point A in the first quadrant with a launching angle -» or its counterpart ir. 

He can plot a tentative optimal trajectory initiated by -ir as the dotted line, the 

trajectory initiated by * as the circled line shown in Fig. 3. It is clear from 

this figure that the dotted trajectory is much more feasible than the circled one. 

In this case a negative launching angle with a positive control which gives a 

counterclockwise turn towards the wind has a better potential to reach the 

origin than a trajectory initiated by a positive launching angle. Similar situa- 

tions are illustrated at test points B and C. This geometrical consideration 

determines an initial guess of the nominal control which usually results in a 

convergent solution. 

Representative optimal controls and corresponding trajectories in the 

normalized plane are shown in Fig. 4 thru Fig. 8. Since an easterly wind is con- 

sidered, the velocity angle is driven to zero at the terminal time. This is 

easily seen from these figures by noting that the slope of x.-x2 trajectory de- 

notes the tangent of the velocity angle. For those points outside 80% of the unit 

circle, the optimal control renders most of its effort (in terms of magnitude) 

to bend the trajectory at the beginning towards a natural glide (i.e., with null 

control) and to the opposite direction of wind at the end of flight. If a bank 

angle restriction were imposed in a practical case, which means the control is 

constrained to a certain bounded value, then a prolonged gliding period, which in 

turn requires a higher launching altitude, has to be used in place of the 100 sec. 

considered here to scale the magnitude of this control, see eq. (9). 

It is also interesting to notice that for some of these test points, the 

magnitude of launching angle is even raised beyond 3ou° in order to achieve a 

convergent solution. This trend becomes more apparent as the test points move 

l«f 
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eu-ong t radial direction towards the origin. Meanwhile, the optimal control pattern 

appears to exhibit low frequency sinusoidal characteristics. In other words, the 

control effort is smoothed throughout the whole time interval rtther than sharply 

enforced at the beginning and end of flight. The reason is that the closer the 

test point to the origin, the more effort should be spent to counterbalance the 

trade-off between the fixed gliding time and distance from the origin. Thus the 

optimal trajectory has a somersault turning effect; i.e., for those circumstances 

where the excess flight time is large the parachute meanders around the target. 

In the simulation process, it is felt that a good choice of Lagrange 

multipliers in addition to the nominal control usually makes a distinct difference 

to the final convergence. The self-adjustment routines provided by the DDP 

algorithm in computing the improved variation of multipliers and control are 

based on a second order Taylor expansion about the optimal solutions. The optimal 

multipliers corresponding to the optimal solutions depicted in Fig. U thru 

Fig. 8 are given in Table 2. From this, one can sketch haw sensitive these 

multipliers are to the initial condition changes. 

The entire simulation work is summarized in Fig. 9. Completely and 

partially feasible regions are specified individually as the pear shape shaded 

area and funnel shape spots outside this area. This map provides a conv«- ^«nt 

reference for the pilot to drop the parachute while flying into the completely 

feasible region under uniform wind condition. All feasible ranges of launching 

angle an tabulated in Table 3. The bank angles corresponding to the magnitudes 

of the normalized controls are shown in Fig. 10 for various (T-t0) values. A 

comparison with the optimal control values in Figs. 4-8 indicates that bank 

angles exceeding 30° would only be required when the time to go is relatively 

short — on the order of 20 or 30 seconds. 

An average cost of $2.50 corresponding to a CPU time of 20 sec. is needed 

to compute a typical solution. 

15 
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IV.    CONCLUSION AND REMARKS 

The optimal control problem for a gliding parachute system is formulated 

in two ways. One is to minimize the performance index without terminal constraints, 

and the other is with the constraint. We have shown the existence of an optimal 

control for the former problem. Nevertheless, we can only provide some convergent 

results in the latter case. Two reasons may explain this. First, the controlla- 

bility question of a nonlinear system of the type considered here is not answered 

yet; that is, the existence of such a control that drives the given system to 

the origin at e prespecified time is beyond our knowledge. Second, an inherent 

deficiency in the DDP successive approximation scheme arises when singular matrix 

inversions are encountered. 

A completely feasible region in the upper half unit circle is computed and 

specified. In th.'.s region, a convergent solution is achieved for any given condi- 

tion. In the risst of the upper unit circle, for different initial coordinates 

(x1,x_), feasible ranges of launching angle from which convergent solutions are 

obtained have also been specified. 

It is observed that the optimal control function, as well as the feasible 

range of launching angle, varies considerably along both the radial and circular 

direction. The initial guess of nominal control and multipliers thus r'ays an 

important role in obtaining convergence. In most cases, a geometrical considera- 

tion fs helpful to determine such an initial guess. 

From a practical viewpoint, further investigation is needed to determine 

either a more efficient algorithm for computing optimal controls or an acceptable 

suboptimal control law which can be implemented on-line. 

16 
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APPENDIX 

Derivation of a DDP algorithm 

A second order differential dynamic programming (DDP) algorithm is applied 

to compute the optimal control for selected initial conditions in the upper half 

unit circle. Here is a brief review of the derivation of this algorithm. 

(Martensson O]) 

Given a dynamic system 

x = f(x, u, t)        x(0) = x 
o 

and the performance index 

,rCx(T),T] +   | 
o 

(16) 

%    J(U)=     Tt)     HT)'«*f ««.«.t)dt} (17) 
0<t<T 0<t<T 

subject  to the constraint equation 

*[x(T),T] =  0  . (18) 

One way to manage the terminal constraints is to incorporate ty into the per- 

formance index by means of Lagrange multipliers  (Bryson and JIo [1]).    From now on, 

we    will    consider     ,e modified performance index 

J(u)  = F[x(T),T] t        L(x,u,t)dt + b' * tx(T), 
^ (19) 

(') means taking the transpose of a vector or matrix.) 

Define 

V(x,b,t) = min  JF + b' * ♦ f Ldsl 
u(s)  I Jt   / (20) 

t<s<T 

18 
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Assuming that V(x,b,t) exists and is twice continuously differentiable with 

respect to x and t for all te[0,T], then V satisfies the Hamilton-Jacobi- 

Bellman equation 

-   f   *    min    f + Vx f} (21) 

Suppose u, x, b is a nominal solution neighboring to the optimal solution u (t) 

ft ft 
= u(t) + 5u(t), x (t) = x(t) + 6x(t), b = b + 5b then equation (21) becomes 

3V      ft    ft 
ft (x ,b  ,t) min (L(x ♦ 6x,ü t 6u, t) t V (x ♦ 6x, b + 6b, t) f(x + 6x, ü + 6ü, t) 

6u x 

(22) 

ft      ft 
Now assume V(x , b  , t; is sufficiently smooth to be expanded in a second order 

ft      ft 
Taylor expansion.    Then we can approximate V(x , b  , t) with 

V(x'\ b", t) = V + V 6x + V. 6b + «5x, V. <5b> t i <6x, V    6x> + i <6b, V,. 6b> xb XX bb 

V (x'\ b',t)sV    tix'v      + 6b' V , 
x      '      ' x xx xb (23) 

all quantities are evaluated at x, b, t unless otherwise specified.    Let a(x, b, t) 

be the difference between optimal cost at x, b, t and predicted optimal cost at 

this point, i.e. 

a(x, b, t) = V(x, b, t) - V(x, b, t) (24) 

Substituting Eq. (2:W2»0 into eq. (22), 

3V_. 3VV 0V (™      3V 3VK '<** K ,3V , 3V.. i 

min {L + < V    + 6x V     + 6b 
. X XX 6u 

V^, f(x + 6x, ü + 6u, t)>> (25) 

19 
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. ft     ft 
Because V(x , b  , t) is approximated by a second order expansion, the following 

relations between total and partial derivatives hold: 

^- (V ♦ a) - |^<V + a) * Vx f(x, Ü, t) 

d 3/x        ' -    - 
XT V    = T~ + f  (x,  u,  t)  V dt    x      at '    ' xx 

d    „      _      xx 
dt    xx "    at (26) 

d 3Vb - -    - 
dT vb " aT  + f <*• u« *> vbx 

av, t d bb V 
dt bb at 

av , 
d 

Vxb 
— xb 

dt at 

All V and its partial derivatives are evaluated at x, b, t.    Eq.   (25) and (26) 

are fundamental equations in this DDP algorithm.    From these equations we can 

identify all those partial derivatives of V(x, b, t) in terms of the Hamiltonian, 

which we'll introduce next, and its partial derivatives with respect to u and x. 

These values can he computed simultaneously when we integrate Eq.   (26) to find 

V(x, b, t) and its partial derivatives with respect to x and b. 

>v      ft 
Finally, compute V(x  , b   , t) according to Eq.   (23).    During this process, 

6u the optimal variation which should be added to the minimizing control ü 

(which minimizes Hamiltonian) is also computed in terms of <5x and 6b. 

Define the Hamiltonian to be 

H(x, u, Vx, t)  = L(x, ut t) t Vx f(x, u, t) (27) 

By this definition, if we let 6x and 6b  be zero in Lhe right hand side of Eq. (25), 

we have in terms of H 

20 
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min (H(x, u + 5u, V , t)} (28) 
6u * 

JL 

First we can determine the optimal variation 5u    that minimizes the bracket 

_ ft 
in (28), and let the minimum be H(x, u, V , t) where u = u + 5u .    The 

necessary conditions for this are 

and 

Hu(x, u, Vx  , t) = 0 

Huu(x, u, Vx, t) > 0        (positive definite) 

(29) 

This u would be the optimal solution if the corresponding trajectory and 

multipliers were x and b respectively. However, this is not the case in general. 

Therefore, certain corrections on u must be made to take into account the 

difference between (x, b) and the optimal one. Let these differences be 6x 

and 6b respectively. Reconsider the minimization of Hamiltonian as 

min {H(x + 5x, ü + <Su, V (x + 5x, b + 5b , t), t)) (30) 
5u X 

Again, necessary conditions for a minimum would be 

Hu(x t 5x, ü + 5u, Vx (x t 5x, b t 5b, t), t) = 0 

Huu(x + 6x, ü + 5u, V (x + 5x, S t 5b, t), t)> 0 

In order to determine 5u in terms of Ox and 5b, we expand Eq.  (31) to first 

order about x, u, b, t.    Than 

H      + H      5u + H      6x + f    (V      5x + V .   5b) = 0 u uu JX u     xx xb 

(31) 

From Eq.  (29) H    = 0, hence 

H      5u + (H      t f    V    ) 5x + f   V ,   5b = 0 uu ux       u   xx' u    xb 

21 
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Assume H (x, u, V , t) is nonsingular, then 
UU X 

6u = ßx 6x + ^ 6b (32) 

where ß = - H _1 (H  t f V ) 
1    uu   ux   u xx 

ß2 = " "uu"' fu' Vxb 

(33) 

Insert 6u into Eq. (30) and expand it to second order about x, ü, b, t; using 

the fact Hu(x, u, V , t) = 0, we obtain 

H ♦ (Hx ♦ f Vxx) 5x t f Vxb 6b t <6x,{(Hux ♦ fM^) ^  * Sx H^ 

+ (fx + fußl)'Vxb} 6b> + <6b« {J ß2 Huuß2 + Vxb' f ß2} ib> 

+ <6x« {7 Hxx + Vxxfx * ? ßl Huußl * ßl (Hux + fu'Vxx)} 6x>        <34> 

vhsre all quantities are evaluated at x, u, E, t. 

The series expansion (34) is now ready for identification with the left hand 

side of Eq. (25). We can identify those partial derivatives by equating the 

coefficients of power ter:ns in 6x and 6b. Finally, after combining with Eq. (26) 

we obtain a set of ordinary differential equations from which V, V , V,, V , , 

Vxx' Vbb are inte8rated» *»••» 

- |f = H - H(x, Ü, Vx t) 

dV 

- dir = Hx+ tf - f<*>«. t>] vxx 

dvb - - -35-- Cf- f(x, u, t>]   Vxb 

22 
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dV   K xb 
dTl[fx+W    Vxb (35) 

dVbb 
dt ■ " 02 Huu ß2 

dV 
xx 

dt = H  + f V  + 
xx + fx Vxx + vxx fx + h  Huu ßl + h  (Hux t fu Vxx) 

t (H  + f V ) 0, 
ux   u xx' Ml 

with boundary conditions 

a(x(T), b, T) = 0 

Vx(x(T), b, T) =  Fx(x(T), T) + b' ^x (x(T), T) 

Vb(x(T), b, T) = i (x(T), T) 

V^CiCT), b, T) =  ix (x(T), T) 

Vbb(x(T), b, T) = 0 

Vxx(x(T), b, T) = FxX(x(T), T) + b  ^xx<x(T), T) 

All terms on the right hand side of Eq. (35) are evaluated at x, ü, b, t 

unless other wise specified. 

(36) 
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FIG. 10   BANK ANGLE    v s NORMALIZED   CONTROL 

35 


